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Salinization is a common problem for agriculture in dryland environments and it has greatly affected land produc-
tivity and even caused cropland abandonment in Central and Southern Iraq. Hence it is of pressing importance to
quantify the spatial distribution of salinity and its changing trend in space and time and ascertain the driving forces
thereof. This study aims at such a diachronic salinity mapping and analysis using multitemporal remote sensing
taking a pilot site, the Dujaila area in Central Iraq, as an example. For this purpose, field survey and soil sampling
were conducted in the 2011–2012 period, and a multitemporal remote sensing dataset consisting of satellite im-
agery dated 1988–1993, 1998–2002, and 2009–2012 was prepared. An innovative processing approach, the mul-
tiyear maxima-based modeling approach, was proposed to develop remote sensing salinity models. After
evaluation of their suitability, the relevantmodelswere applied to the images for multitemporal salinity mapping,
quantification, and change tracking in space and time. The driving causes of salinization in the study area were
evaluated. The results reveal that the developed salinity models can reliably predict salinity with an accuracy of
82.57%, indicating that ourmappingmethodology is relevant and extendable to other similar environments. In ad-
dition, salinity has experienced significant changes in the past 30 years in Dujaila, especially, very strongly sali-
nized land got continuously expanded, and all these changes are related to land use practices and management
of farmers, which are closely associated with the macroscopic socioeconomic environment of the country.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Salinity is a problematic issue for agriculture in the Mesopotamian
Plain, Iraq since about 2300–2400 BC (Dieleman, 1963; Schnepf, 2004;
FAO, 2011) and has become more severe in the recent decades. It is re-
ported that approximately 60% of the cultivated land has been seriously
affected by salinity, and 20–30% has been abandoned in the past
4000 years (Buringh, 1960; FAO, 2011) due to irrational land manage-
ment (e.g., overirrigation and poor drainage) and other natural factors
(e.g., flooding, drought, and impermeability of the underlying forma-
tion). It is clear that the arable agricultural land would further dwindle
inMesopotamia because of such land degradation, andmight be exacer-
bated by climate change, and food security would face harsh challenge
in the country. It is hence of prime importance to quantify the salt-
affected land, assess its change trend in space and time, and understand
the causes of salinization in order to provide relevant reference for the
local and central governments for their sustainable agriculture develop-
ment and land management in the future.

In regard of the salinization in Central and Southern Iraq, several
authors, for example, Jacobsen and Adams (1958), Buringh (1960),
94600 Choisy-Le-Roi, France.
Dieleman (1963), Al-Layla (1978), Al-Mahawili (1983) and Abood et al.
(2011) have conducted studies and assessments. These assessments
allow us to have a general understanding of salinity in theMesopotamian
Plain. International organizations such as FAO and UNESCO (United Na-
tions Educational, Scientific and Cultural Organization) together with
the Ministry of Agriculture (MoA) of Iraq have carried out soil classifica-
tion andmapping in 1960 (Buringh, 1960). FAO (2008) investigated brief-
ly the salinity severity in Western Asia including Iraq. However, the
outdating of maps and their extremely low resolution (e.g., 4–10 km in
pixel size) cannot meet the requirement of farm-level or household-
level land management and for salinity control. Therefore, it is essential
to produce salinity maps with higher resolution, higher accuracy and re-
liability to meet the urgent need of farmers and governments.

Salinity assessment and mapping are traditionally conducted by soil
surveys and interpolation of analytical results of soil samples. However,
such conventional means of soil survey requires a great deal of time
(Ghabour and Daels, 1993) and funding investment. Fortunately, a sig-
nificant progress has beenmade in this field thanks to the development
of remote sensing technology in the recent decades, which offers a pos-
sibility for mapping and assessing salinity processes more efficiently
and economically (Garcia et al., 2005). In fact, since the 1970s, a number
of authors namely Hunt et al. (1972), Driessen and Schoorl (1973),
Golovina et al. (1992), Steven et al. (1992), Mougenot et al. (1993),
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Rao et al. (1995), Metternicht (1998), Metternicht and Zinck (2003),
Shao et al. (2003), Douaoui et al. (2006), Farifteh et al. (2006, 2007),
Fernández-Buces et al. (2006), Brunner et al. (2007), Rodríguez et al.
(2007), Eldeiry andGarcia (2010), Furby et al. (2010) and so on have in-
vestigated saline soil-related spectral features and radar signatures, and
obtained a number of interesting results, for example, the relationships
between vegetation indices and soil salinity (Steven et al., 1992; Huete
et al., 1997; Garcia et al., 2005; Al-Khaier, 2003; Brunner et al., 2007;
Lobell et al., 2010; Iqbal, 2011; Zhang et al., 2011). Some authors have
argued for the possibility to assess salinity using the moisture content
indicator, NDII (Normalized Difference Infrared Index, Hardisky et al.,
1983), and the thermal band (Metternicht and Zinck, 1996, 2003;
Goossens and van Ranst, 1998; Iqbal, 2011). Recently, Douaoui et al.
(2006), Fernández-Buces et al. (2006), Farifteh et al. (2007), Eldeiry
and Garcia (2010) and Hu et al. (2014) have proposed respectively the
regression-Kriging method, combined spectral response index (COSRI)
and best band combination including vegetation index for salinity clas-
sification and spatial variability modeling. Others have even discussed
the potential to use SAR (Synthetic Aperture Radar) backscatter coeffi-
cients to characterize soil electrical conductivity (Singh and Srivastav,
1990; Singh et al., 1990; Taylor et al., 1996; Metternicht, 1998; Shao
et al., 2003).

These studies illustrate not only the advantage, feasibility and great
potential of remote sensing and GIS in salinity mapping and assessment
but also challenges to which we need to pay attention. Firstly, salt con-
centrated in subsoil is not easily detected by optical remote sensing
(Farifteh et al., 2006); even in the topsoil (surface), if the salt content
is below10–15%, it is difficult to be discriminated fromother soil surface
components (Mougenot et al., 1993); however, reflectance increases
with the increase in quantity of salts at the terrain surface, and this is
particularly true for the blue band, in which the interference caused
by ferric oxides is masked (Metternicht and Zinck, 2003). In fact, salt-
affected soils show relatively higher spectral response in the visible
and near-infrared regions of the spectrum than non-saline soils, and
strongly saline–sodic soils present higher spectral response than mod-
erately saline–sodic soils (Rao et al., 1995; Metternicht and Zinck,
2003). Secondly, the moisture in soil contributes to the decrease in
reflectance in the middle- and near-infrared bands (Epema, 1990;
Mougenot et al., 1993), which can easily lead to misinterpretation of
salinity if just based on reflectance or vegetation indices. Thirdly, halo-
phyte vegetation and even salt-tolerant crops such as barley, cotton,
and alfalfa can modify the overall spectral response pattern of salt-
affected soils, especially in the green and red bands (Rao et al., 1995;
Metternicht, 1998).

We understood from the above brief review that remote sensing is a
promising tool, especially, for large-scale salinity assessment. The out-
comes of other authors such as relationships established between vege-
tation indices, moisture index (e.g. NDII), land surface temperature
(LST, from the thermal band) and soil salinity will be useful if they can
be ascertained. However, care should be taken towork out a reasonable
approach for salinity quantification by taking the above challenges into
account. In this context, themain objectives of this study are to propose
an integrated approach for soil salinity mapping and assessment, track
the change trend of the salt-affected soils in space and time, and ascer-
tain the role of anthropogenic land use practice andmanagement in the
salinization processes. The Dujaila site, a severely salt-affected area in
Central Iraq (Fig. 1), was selected as a pilot site to demonstrate the de-
velopment procedure of the integratedmapping approach and its appli-
cation for salinity change trend tracking.

2. Materials and methods

2.1. Study site

The Dujaila area, located between the Tigris River (north) and the
Gharraf River (southwest), and administratively in theWasit Governorate
(Fig. 1) in Central Iraq, is the site where the largest Land Settlement Pro-
ject started in 1946 as a model and experiment in Iraq after the Second
World War (Dieleman, 1963). The total project area is around 99,000 ha
including irrigated and non-irrigated land which can be further divided
into three zones: reclaimed, semi-reclaimed and non-reclaimed. In the
beginningof theproject,with the formationof thenew irrigationnetwork
for reclamation, salinity became worse due to lack of drainage system
(Dieleman, 1963). That is why a number of experiments on salinity
control by drainage, leaching and cultivation of salt-tolerant crops
were conducted in the 1954–1959 period (Dieleman, 1963) and the
successful experience was implemented and extended to the whole
area. Land reclamation was not stopped until 1983.

The soil in the study site is mainly alluvial silty loam (locally silty
clay loam) containing about 26–27% of lime and 0.4–2.5% of gypsum
(Dieleman, 1963). According to its origin, the soil is Fluvisols; however,
most of the soil is salinized, and locally, strongly salinized, and hence
can be also classified as Solonchak or Solonetz in terms of theWorld Ref-
erence Base for Soil Resources (WRB). The measurements of Dieleman
(1963) revealed that the surface soil (0–30 cm in depth) had a salinity
of about 65 deci-Siemens per meter (denoted as dS/m in the following
sections).

The Dujaila area belongs to a subtropical climate zone, characterized
by short cool winter and long hot summer. Rainfall is concentrated in
winter and spring fromNovember toMarchwith an average annual rain-
fall of about 141mm in the past 60 years (measured at the adjacent sta-
tion, Al-Hay).Winter is cool and short with amean temperature of 12 °C
from December to February. Summer is dry and hot to extremely hot
with the maximum mean temperature of 45 °C in July and August.

The crops cultivated are wheat, barley and vegetables in winter and
cotton, maize, millet, sorghum and sunflower in summer.

2.2. Field investigation and data

To map salinity, field survey is fundamental and essential. The sur-
vey campaign including soil sampling, measurement of EM38-MK2
(briefed as EM38, an electromagnetic instrument made by Geonics Ltd
to measure soil electrical conductivity), land use/cover investigation
and soil chemical analysis in laboratory was conducted during the
October 2011 to June 2012 period. Soil samples included 15 surface
(0–30 cm in depth) and 5 profile (0–150 cm) samples. Soil profiles
were dug on October 19–21, 2011 and sampled at horizons of 0–
30 cm, 50–70 cm, 90–110 cm, and 120–150 cm. Surface soil samples
were obtained using auger in the places where EM38 measurements
were also conducted on March 25–28, 2012 (4–6 days after rainfall
events) and on June 28–July 04, 2012 (dry season after harvesting but
before summer irrigation). The five profiles were revisited with EM38
measurements on March 25–28, 2012 due to the late arrival of the
latter.

As designed, both vertical and horizontal EM38 readings (denoted
respectively as EMV and EMH)were taken in plots (1× 1m2) distributed
at three corners of a trianglewith a distance of about 15–20m fromeach
other. The averaged value of the three corner plots was regarded as the
representative of the observation point in the center of the triangle. The
objective of this treatment is to have more comparability between the
field sampled data and the satellite images (with pixel size of 6.5–
30 m). The electrical conductivity (EC) of 20 soil samples analyzed
using 1:1 dilute method in laboratory and 62 pairs of EMV and EMH

reading data were made available for this study.
The sampling locations (e.g., each triangle) were randomly selected

depending on the accessibility but the variation of the field conditions
such as salinity level, crop health and land use types was fully covered.
The distribution of the sampling plots is shown in Fig. 2.

Amultitemporal dataset mainly composed of Landsat TM (Thematic
Mapper) and ETM+ (Enhanced Thematic Mapper Plus) images in the
frame of 167-38 (Table 1), one scene of SPOT image dated March 28,
2010 and one RapidEye image dated April 22, 2012 were also acquired.



Fig. 1. Location of the study area, Dujaila, in Mesopotamia, Iraq.
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2.3. Methods and processing procedure

In addition to the abovementioned challenges, one critical problem
for salinity assessment by remote sensing is related to crop rotation/
fallow practice which may lead to significant change in spectral reflec-
tance and vegetation indices whereas salinity may not subsequently
change. Therefore, a single date image cannot avoid such problem and
is prone to giving false informationon salinity. For this reason,wepropose
in this paper an innovative processing approach, that is, the multiyear
maxima-based modeling approach for salinity mapping to minimize the
aforementioned challenges or problematic issues based on the achieve-
ments of other authors (Hardisky et al., 1983; Zhang et al., 1997, 2011;
Goossens and van Ranst, 1998; Eldeiry and Garcia, 2010; Garcia et al.,
2005; Al-Khaier, 2003; Brunner et al., 2007; Iqbal, 2011). In this approach,
only the maximal value of vegetation indices (VIs) or non-vegetation in-
dices (NonVIs) of each pixel including both spring and summer in a peri-
od of four tofive yearswas taken into consideration given that fallow lasts
generally two to three years in Central Iraq. We assumed that salinity
would not change significantly in such a short period if land use practice
did not change. Then themaxima of vegetation indiceswere linked to the
field-measured salinity (EM38 readings and laboratory EC) to derive re-
mote sensing-based salinity models. The models were applied back to
the maximal indices for salinity mapping in which vegetated and non-
vegetated areaswere separately treated. Suchprocessing could also great-
ly resolve the gap problem in the recent Landsat ETM+ imagery (after
2003) left by the failure of the Scan-Line Corrector (SLC-Off) of the captor.
The concrete procedures for image processing andmodeling are unfurled
in the following paragraphs.
2.3.1. Atmospheric correction and multispectral transformation
After conversion into at-satellite radiance, atmospheric correction of

all Landsat, SPOT and RapidEye imagery was conducted using FLAASH
(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes) Model
(Perkins et al., 2005) which can correct both additive and multiplicative
atmospheric effects. FLAASH reflectance was rescaled to normal range
of 0 to 1.

Multispectral transformationwas undertaken on the atmospherically-
corrected Landsat, SPOT and RapidEye images to derive a number of
vegetation indices (VIs) that are considered useful for salinity assessment
such as NDVI (Normalized Difference Vegetation Index: Rouse et al.,
1973), SAVI (Soil Adjusted Vegetation Index: Huete, 1988), EVI (En-
hanced Vegetation Index: Huete et al., 1997, 2002), ARVI (Atmo-
spherically Resistant Vegetation Index) and SARVI (Soil-Adjusted
and Atmospherically Resistant Vegetation Index: Kaufman and Tanré,
1992).We also used a new vegetation index, the Generalized Difference
Vegetation Index (GDVI) developed byWu (2014), for salinity analysis.
The GDVI has the following form:

GDVI ¼ SRn−1
� �

= SRn þ 1
� � ¼ ρn

NIR−ρn
R

� �
= ρn

NIR þ ρn
R

� �
: ð1Þ

where SR is the simple ratio index; ρNIR and ρR are respectively the
reflectance of the near infrared (NIR) and red (R) bands; and n is
the power number, a non-zero integer from 1 to n. When n = 1,
GDVI = NDVI. As Wu (2014) found, when n = 2, GDVI is better corre-
latedwith LAI (Leaf Area Index) in all biomes, andmore sensitive to low
vegetal biomes than all other vegetation indices. However, with the in-
crease of n (e.g., n= 3 and 4), GDVI becomes saturated and insensitive
to densely vegetated areas (e.g., wheat cropland, forest). High power
GDVI is thence only relevant for land characterization in sparsely vege-
tated dryland biomes such as rangeland and woodland. Since there are
different types of croplands in our study site, we applied GDVI, of which
n=2, as a test in this study to check its sensitivity to soil salinity togeth-
er with other vegetation indices.

It is worthy of mention that SPOT and RapidEye images cannot pro-
vide VIs such as ARVI, EVI and SARVI as they do not contain the blue
band.

The moisture/water content index, NDII (Hardisky et al., 1983),
which is sensitive to not only canopy moisture but also salinity (nega-
tive relationship) due to the combination of TM band 5, was produced

image of Fig.�1


Fig. 2. Distribution of the field sampling plots. Note: The background is the multiyear maximal NDVI from Landsat ETM+ images dated 2009–2012. (The SLC-Off gaps were filled. See
Section 2.3 for procedure.)
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from TM and SPOT 4 images, and other non-vegetation indices such as
Tasseled Cap Brightness (TCB: Crist and Cicone, 1984; Huang et al.,
2002; Ivits et al., 2008) and Principal Components (PCs, mainly the
first and second Principal Components, denoted as PC1 and PC2) were
also derived from Landsat TM and SPOT images (RapidEye can provide
only PCs). These transformations convert land cover information from
multispectral bands into several thematic indicators, e.g., vegetation
greenness and soil moisture. Especially, TCB, an indicator of soil bright-
ness, is regarded as an approximation of soil albedo or bulk reflectance.

LST, a useful salinity indicator as Metternicht and Zinck (1996,
2003), Goossens and van Ranst (1998) and Iqbal (2011) have revealed,
was converted from the thermal band of Landsat TM and ETM+ images
during the crop growing period from February to the first half of April
(because barley reaches its maturity in the middle of April and is har-
vested at the end of the month in Central and Southern Iraq). LST con-
version was based on the following equations (Chander et al., 2009):

Lλ ¼ Grescale � Qcal þ Brescale ð2Þ

T ¼ K2=ln K1=Lλð Þ þ 1ð Þ ð3Þ
Table 1
Landsat images in the frame with path-row number of 167-38 used in this study.

2010 (2009–2012)
(Landsat 7 ETM+)

2000 (1998–2002)
(Landsat 5 TM and 7 ETM+)

Spring Summer Spring

2009-03-26 2009-09-02 1998-04-21 (L5)
2009-04-11 2010-08-20 2000-03-09 (L5)
2010-03-29 2011-08-23 2000-04-26 (L5)
2011-04-17 2012-08-25 2001-03-20 (L7)
2012-04-03 2001-04-21 (L7)
2012-04-19 2002-04-24 (L7)
where Lλ is the spectral radiance at the sensor's aperture [W/(m2 sr μm)];
Qcal is the quantized calibrated pixel value in digital number [DN];
Grescale is the band-specific rescaling gain factor [(W/(m2 sr μm))/DN];
Brescale is the band-specific rescaling bias factor [W/(m2 sr μm)]; and
K1 and K2 are calibration coefficients (see Chander et al., 2009 for
detail).
2.3.2. Multiyear datasets and the maxima of VIs
A multiyear VI dataset including that from Landsat, SPOT and

RapidEye images was constituted for each VI such as NDVI, SAVI,
GDVI, EVI, and SARVI; the same was done for NDII and LST, and the
NonVIs namely TCB and PCs (PC1 and PC2). Then the maximal value
of each VI and NonVI in each pixel was extracted by an algorithm de-
signed using IDL (Interactive Data Language).

To get a possibly better correlative function with salinity, the vari-
ants of the maximal indicators (VIs, NonVIs, NDII and LST) in the form
of exponent (exp) and natural logarithm (ln) were derived in con-
sideration of the fact that the dependent variable, in our case, the sa-
linity, may have better response to the variant(s) of the independent
variable(s).
1990 (1988–1993)
(Landsat 4 and 5 TM)

Summer Spring Summer

1999-08-14 (L5) 1988-03-16 (L4) 1990-08-13 (L4)
2000-08-08 (L7) 1990-02-18 (L4) 1990-08-29 (L4)
2002-07-29 (L7) 1990-03-06 (L4) 1992-08-02 (L4)

1991-03-01 (L5) 1992-08-18 (L4)
1993-02-26 (L4)
1993-03-30 (L4)

image of Fig.�2
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2.3.3. Stratification of the vegetated and non-vegetated areas
To separate the vegetated and non-vegetated areas, we used the

multiyear maximal NDVI image by thresholding technique, e.g., giving
tentatively a threshold of 0.2 to examine whether it can divide largely
the vegetated and non-vegetated areas while compared with the natu-
ral color composite of the original images. If the vegetated-area is
overstated, the threshold should be tuned up (e.g., 0.21, 0.22), other-
wise, it should be tuned down, e.g., 0.19, 0.18, till when the best thresh-
old is reached. For the multiyear period 2009–2012, it is 0.23, and it is
0.21 for 1998–2002, and 0.22 for 1988–1993.

After this division, the sampled data located in different areas can be
also divided into two groups: vegetated and non-vegetated area
samples.

2.3.4. Multiple linear regression analysis
A Pearson correlation analysis was firstly applied to understand the

correlation between the EC/EM38 and VIs/NonVIs or that among the VIs
and NonVIs. Then the least-square multiple linear regression analysis
was undertaken at the confidence level of 95% to couple the soil EC/
EM38 measurements in 2011–2012 with the multiyear maximal VIs,
NonVIs and their variants of the 2009–2012 period to obtain the specific
salinity models in the vegetated area, and non-vegetated area, and the
integrated salinity models in the whole study site including both vege-
tated and non-vegetated areas. We have to mention that the indepen-
dent variables, which were strongly correlated with each other (e.g.
R2 N 0.90), were selectively input for modeling, i.e., we selected the
ones of the best correlation with salinity among all the VIs, together
with other non-correlated ones as inputs to avoid auto-correlation
problem among VIs.

NDII and LST have both vegetation and non-vegetation characters,
and were integrated in both vegetated and non-vegetated areas for sa-
linity modeling.

2.3.5. Evaluation of the models' reliability
To understand whether all the models obtained in Section 2.3.4 are

relevant, and reliable for predicting remote sensing-based salinity, it is
essential to conduct an evaluation procedure to examine their predicted
results against thefieldmeasured data. To achieve this purpose, the spe-
cific VI-based models were applied back to the maximal VIs in the veg-
etated area, and NonVI-based models to the maximal NonVIs in the
non-vegetated area, and the integrated models to both VIs and NonVIs
of the whole site of the period 2009–2012. The produced maps to be
evaluated include (1) those from the integrated models EC-VIs and
EMV-VIs without distinction of vegetated and non-vegetated areas;
(2) the mosaicked maps from the integrated models EC-VIs or EMV-VIs
for the vegetated area, and EMV/EMH-NonVIs for the non-vegetated
area; and (3) the mosaicked ones from the specific models for vegetated
and non-vegetated areas.

Theses maps were examined using laboratory measured salinity by
linear regression analysis as was done by Wu et al. (2013) at the confi-
dence level of 95%. If the agreement between the map and the ground
truth data is N80% (R2 N 0.8), the predicted salinity map is considered
reliable and the models that we developed are operational.

2.3.6. Multitemporal mapping and salinity change trends
Themost relevant salinitymodels that have been evaluatedwere ap-

plied to the historical multiyear maximal VIs and NonVIs dated 1990
(1988–1993) and 2000 (1998–2002) for multitemporal salinity map-
ping. As the processing of all historical images was the same as was
done for the recent ones (the only difference is that there were no
SPOT and RapidEye images in the historical datasets), the historical sa-
linity maps were regarded reliable although we do not have much his-
torical salinity measurement data to validate.

Based on this, the salinity dynamics, change trends in space and time
in the recent decades, can be tracked by the differencing technique and
the change in each salinity class was quantified.
2.3.7. Linking salinity change with land use practice and management
By linking the salinitymaps and change trendwith thefield observa-

tion in land management and household socio-economic survey, a ten-
tative analysis to understand the salinization process and causes was
conducted.
3. Results and discussion

3.1. Salinity models

As shown in Table 2, all vegetation indices (including NDII and LST)
and their exponential and logarithmic variants are strongly correlated
with the salinity measured in laboratory (EC) and field EM38 readings
if we take into account both vegetated and non-vegetated areas as a ho-
listic site, and GDVI is the best salinity indicator. TCB and PCs, however,
show lower correlations with EC and EM38 readings.

Table 3 shows that if we separate vegetated and non-vegetated
areas, the correlation coefficients between EC/EM38 readings and VIs
are generally low (R2 b 0.50 for EC-VIs and b0.61 for EMV/EMH-VIs, re-
spectively) in the vegetated area, and those in the non-vegetated area
between EMV/EMH and NonVIs seem better, among which the best
ones (e.g., EMH-TCB/PC1) reach 0.74.

Multiple linear regression analysis allowed us to obtain a number of
models as listed in Table 4: two integrated models (Model 1: EC-GDVI
and Model 2: EMV-GDVI) for the whole study site (without distinction
of vegetated and non-vegetated areas), two integrated models (Model
3: EMV-LST/NDII and Model 4: EMH-LST/NDII) for the non-vegetated
area in which all samples were calibrated with the NonVIs, one specific
model for the vegetated area (Model 5: EMV-GDVI) based on 43 sam-
ples located in the vegetated area, and two specific models (Model 6:
EMV-PC1 and Model 7: EMH-TCB) for non-vegetated areas which were
derived from 16 samples in the non-vegetated area.

The predicted salinity of thewhole study area byModels 1 and 2was
evaluated with the ground measured data (laboratory EC), and the re-
sults are shown in Fig. 3a and b. Clearly, both models allow predictions
with high accuracy (R2 = 0.864 from Model 1 and R2 = 0.869 from
Model 2). However, the salinity predicted from Model 2 (EMV-GDVI)
has a clear shift from the groundmeasured salinity by 8.99— the intercept
in Fig. 3b, which means that the modeled ECs fromModel 2 (EMV-GDVI)
are higher than the ground measured ones as a consequence of multipli-
cative error fromEMV-GDVI to EC-EMV. Tomatch the salinitymapderived
from the EMV-VIs model (Model 2) to the real salinity, there is a need to
adjust this shift by reducing 8.99− 0.59=8.4 to keep it at the same level
as that fromModel 1 (EC-GDVI), ofwhich the intercept is 0.59. The advan-
tage of these twomodels lies in the reasonable prediction in the vegetated
area but the disadvantage is the underestimation of Model 1 and overes-
timation of Model 2 in the non-vegetated area, e.g., about 15–40 dS/m
lower in the strongly salinized area for Model 1 and 10–35 dS/m higher
in the known sampling sites in the non-vegetated area for Model 2 de-
spite their globally high multiple R2 values.

For this reason, other two salinity maps from Models 3 and 4 were
produced for the non-vegetated area. After the shift adjustment, 1500
random points were generated in the non-vegetated area to check the
agreement between the two maps. By removing those falling in the
SLC-Off gaps (although we have applied the multiyear maximal algo-
rithm, gaps cannot be perfectly filled in the LST and NDII images), 1186
points remained. The predicted EC values of both salinity maps at these
points were extracted for the non-vegetated area. The agreement be-
tween twomaps was found to be very high (Fig. 3c, R2 = 0.944), where-
as, Model 4 seems slightly overestimated with respect to the known
salinity. So, the map from Model 3 appears more relevant for the non-
vegetated area.

As for the specific Model 5 (EMV-GDVI, where the multiple R2 value
is low, 0.372), the salinitymapwas produced for the vegetated area, and
its agreement with or its reliability against the ground data is about



Table 2
Integrated Pearson correlation coefficients between salinity and VIs/NonVIs in both vegetated and non-vegetated areas in the whole Dujaila site.

Cases (N) Salinity SAVI SARVI NDVI GDVI EVI NDII ln(SAVI) ln(SARVI) ln(NDVI) ln(GDVI) ln(EVI) ln(NDII)

20 EC −0.799 −0.811 −0.829 −0.867 −0.761 −0.807 −0.869 −0.881 −0.891 −0.899 −0.869 −0.891
59 EMV −0.824 −0.820 −0.837 −0.858 −0.798 −0.779 −0.836 −0.786 −0.847 −0.837 −0.825 −0.783
59 EMH −0.791 −0.781 −0.806 −0.838 −0.759 −0.740 −0.820 −0.757 −0.831 −0.829 −0.798 −0.743

Cases (N) Salinity exp(GDVI) exp(NDVI) exp(EVI) exp(SAVI) LST ln(LST) PC1 PC2 TCB

20 EC −0.840 −0.802 −0.678 −0.777 0.711 0.712 0.495 0.403 0.470
59 EMV −0.854 −0.818 −0.733 −0.809 0.633 0.633 0.638 0.565 0.594
59 EMH −0.828 −0.783 −0.689 −0.773 0.651 0.650 0.591 0.556 0.592
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37.7%. Thus,Model 5 is not recommended to derive salinitymap for veg-
etated area.

Regarding the specific models for non-vegetated areas, Model 6
(EMV-PC1) has the same problem as Model 5, i.e., low multiple R2.
This constitutes the limitation of the model to be applied in the non-
vegetated area. Model 7 (EMH-TCB) seems to be in a better situation
and reveals well the relationship between salinity and TCB, a represen-
tative of the holistic reflectance or albedo of the non-vegetated area.
However, the derived salinity map shows some unrealistic salinity in
saline bareland. For example, the predicted salinity by this model is rel-
atively low in the salt accumulated area (seen white in the color com-
posites) where the salinity should be theoretically high. Probably, this
problem is due to the low representativeness of samples in the non-
vegetated area. This model is hence not recommended for the deriva-
tion of salinity map in the non-vegetated area.

Based on the foregoing evaluation, we understand that the integrat-
ed Models 1 and 2 are reasonable for the vegetated area, Model 1 does
not need the shift correction and is the preferred one, and Model 3 is
pertinent for non-vegetated area. We selected Models 1 and 3 to pro-
duce a mosaicked salinity map of the Dujaila area. The accuracy of this
map against the ground measured salinity is 82.57% (Fig. 3d), a bit
lower than those directly from Models 1 and 2 (Fig. 3a and b), and the
salinity in the non-vegetated area of this map seems more appropriate
according to our knowledge. The combination of Models 1 and 3 is
thus considered operational for Central Iraq.

3.2. Salinity maps and change trend analysis

As a result of the application of Models 1 and 3 to the historical mul-
tiyear maximal GDVI, LST and NDII dated 1990 and 2000, we obtained
the mosaicked salinity maps of 1990 and 2000. These maps together
with that of 2010 are presented in Fig. 4. The salinity change trend
was highlighted by using the differencing technique (Fig. 5), and salini-
zation at different levels is quantified and shown in Table 5.

As shown in Fig. 5 and Table 5, the salinity of different levels has ex-
perienced a strong dynamic change. From 1990 to 2000, both slightly
and moderately salinized land increased respectively by 188% and
150% at the cost of non-saline land (which was reduced by about
29%). Such intensification of salinity is a consequence of land use and
Table 3
Pearson correlation coefficients between EC/EM38 readings and VIs in vegetated areas and bet

Cases (N) Salinity SAVI ln(SAVI) EVI ln(EVI) NDV

Vegetated area 14a EC −0.314 −0.288 −0.372 −0.36 −0.
43b EMV −0.556 −0.564 −0.540 −0.535 −0.
43b EMH −0.462 −0.468 −0.457 −0.453 −0.

Cases (N) Salinity PC1 PC2 TC

Non-vegetated area 16c EMV −0.666 −0.263 −
16c EMH −0.737 −0.127 −

a 14 of 20 laboratory measured soil salinity samples are situated in the vegetated area.
b 44 pairs of EM38 readings in total fall in the vegetated area but one is an outlier.
c 18 pairs of field EM38 readings (EMV and EMH) are located in the non-vegetated area but 2

the EM38 instrument to zero).
management of local farmers related to the macroscopic environment
in Iraq. After the Gulf War during 1990–1991, Iraq was under economic
sanction by the United Nations (UNSC Resolution 660: http://www.un.
org/en/sc/documents/resolutions/1990.shtml). This forced local farmers
to increase land area to produce sufficient amount of food to meet the
needs of the country, and different landmanagement practices were car-
ried out. However, the maintenance of the existing irrigation–drainage
system, which is the guaranty of the crop production in a dry environ-
ment and removes salt from soils, and the reparation of the system
damaged by thewar, could not be supported due to the constraint of eco-
nomic conditions, not tomention to developnew irrigation–drainage sys-
tems. That is why slight and moderate salinization had extended in
Dujaila.

Post 2000, a part of the irrigation–drainage system and other infra-
structures were further devastated, and agricultural activities became
impossible for most of the farmers in Central and Southern Iraq. In the
post-war time (after 2003), international communities and stake-
holders including a number of UN agencies started to intervene in the
form of humanitarian aid and investment for reconstruction of the coun-
try (http://fpc.state.gov/documents/organization/50252.pdf). This has led
to a certain improvement of the harsh condition, e.g., restoration of parts
of damaged canals, and possibility to import food from outside. A part of
slightly and moderately salinized croplands were turned into non-saline
land again thanks to the recovery of the irrigation–drainage system.
Nonetheless, other farmers, who could not benefit from this limited im-
provement, left their land uncultivated due to the poor socio-economic
conditions and the necessity for huge investment to control the salinity
and at the same time to recover the irrigation–drainage systems. The
non-availability of the necessary agricultural system and land abandon-
ment has led to elevation of the groundwater table near to the surface ex-
acerbating salt accumulation and salinization in the soils. That is why the
strongly and extremely salinized classes have increased in the Dujaila site
from 2000 to 2010 (Table 5).

Apart from the regional socio-economic conditions related to salini-
zation in the region, our field survey in this site revealed some micro-
scopic phenomena related to salinization. For example, salts are easily
gathered in certain drainage ditches, non-reclaimed areas and abandoned
river course transported by the drainage systems.When the drainage sys-
tem gets damaged, and land abandoned, salts are accumulated directly in
ween EC/EM38 and NonVIs in non-vegetated areas.

I ln(NDVI) GDVI ln(GDVI) NDII ln(NDII) SARVI ln(SARVI)

387 −0.375 −0.379 −0.364 −0.464 −0.42 −0.447 −0.454
588 −0.602 −0.607 −0.61 −0.478 −0.478 −0.555 −0.555
508 −0.524 −0.532 −0.537 −0.389 −0.389 −0.471 −0.473

B LST ln(TCB) exp(TCB) exp(PC1) exp(PC2)

0.645 −0.048 −0.643 −0.646 −0.667 −0.263
0.742 −0.030 −0.746 −0.739 −0.734 −0.128

cases are not usable because of the difficulty of zeroing (to adjust the background signal of

http://www.un.org/en/sc/documents/resolutions/1990.shtml
http://www.un.org/en/sc/documents/resolutions/1990.shtml
http://fpc.state.gov/documents/organization/50252.pdf


Table 4
Remote sensing-based salinity models.

Type Model
no.

Models Equations Error
scope

Multiple
R2

F-ratio p-Value Cases
(N)

Integrated models for both vegetated area
and non-vegetated areas

1 EC-GDVI EC = −2.87 − 23.27 ln(GDVI) (dS/m) ±5.240 0.874 111.137 1.31E−08 19a

2 EMV-GDVI EMV = 535.403 − 487.905GDVI (mS/m) ±64.168 0.729 142.839 9.99E−16 58b

Integrated models for non-vegetated area 3 EMV-LST/NDII EMV = −2725.05 + 10.018LST − 509.494NDII
(mS/m)

±73.230 0.650 47.360 2.36E−12 58b

4 EMH-LST/NDII EMH = 1, 627, 956.14 + 1148.84LST − 345, 815.62
ln(LST) − 245.198NDII (mS/m)

±58.240 0.649 30.869 1.95E−11 58b

Vegetated area specific model 5 EMV-GDVI EMV = 64.359 − 319.306 ln(GDVI) (mS/m) ±54.680 0.372 24.331 1.39E−05 43
Non-vegetated area specific models 6 EMV-PC1 EMV = 1502.43 − 1166.35 exp(PC1) (mS/m) ±90.811 0.444 11.200 0.005 16

7 EMH-TCB EMH = −223.22 − 1043.11 ln(TCB) (mS/m) ±74.549 0.557 17.585 0.001 16

EMV/EMH (mS/m) can be converted into soil electrical conductivity (EC in dS/m) by the following relationships obtained from the regional transect sampling and measurement in
Mesopotamia: EC = 0.0005EMV

2 − 0.0779EMV + 12.655 (R2 = 0.850) and EC = 0.0002EMH
2 + 0.0956EMH + 0.0688 (R2 = 0.791).

a Model was obtained with 19 samples after removing one outlier.
b Three non-zeroing cases and one outlier were removed.
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the fields as a consequence of groundwater table rise or drying-up of the
logged saline waters. In fact, the concentration of salt(s) in groundwater
in most areas in Central Iraq reaches about 10,000 to 100,000 ppm, and
locally, up to 120,000 ppm. Without an efficient irrigation–drainage sys-
tem, salts are released and accumulated in the soils after evaporation.
This may be the reason explaining the increase in salinity in the north
(abandoned and uncultivated areas in the recent years) and the central
south (non-reclaimed area) part of the study site. Our socio-economic in-
vestigation based on 150 household questionnaires reveals that the dom-
inant driver of salinization and the most difficult factor to control salinity
are the absence of efficient and modern irrigation–drainage systems
(97.5%) and the present irrigation manner such as flooding irrigation is
harmful. Therefore, the restoration or improvement of the available sys-
tems or development of the new systems is the pressing issue for the
local governments and farmers, which needs investment from the central
government or international consortiums.
Fig. 3. Reliability of the predicted salinity. Note: (a) and (b) show respectively the agreement of
measured salinity in thewhole study area; (c) reveals the similarity and difference between the
of the mosaicked salinity map of 2010 against the ground measured data.
3.3. Relevance of the mapping methodology and its advantages

As demonstrated in Section 2, the proposed methodology including
derivation of the multiyear maximal remote sensing indicators and
multivariate regressionmodeling allows us to achieve the development
of salinity models, multitemporal mapping and quantification with
rather considerable reliability and accuracy. However, the following
points are worthy of attention.

After application of the multiyear maxima-based modeling approach,
influence of crop rotation and fallow – false alarm on salinity which is in-
evitable when using single image – is excluded as the maximal VI can be
considered as an integrated proxy of the best crop performance. Actually,
the greenness of a given crop in the single image is easily subject to the
impacts from the biotic and abiotic stresses such as outbreaks of disease
or rust, moisture, soil fertility as well as soil salinity. With this new pro-
cessing algorithm, the moisture-, fertility- and disease-related stresses,
the predicted salinity fromModel 1 (EC-GDVI) andModel 2 (EMV-GDVI)with the ground
predicted EC fromModels 3 and 4 in the non-vegetated area; and (d) shows the reliability

image of Fig.�3


Fig. 4.Multitemporal salinity maps of the Dujaila pilot site. Left: (a) maps are expressed in hue-saturation, and right: (b) maps are shown in salinity level as required by land users and
managers.
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which may cause confusion as salinity, can be minimized because during
the 4-year period, there would be at least one crop (either in spring or
summer) that couldhavenormally grownwithoutwater, fertility anddis-
ease stresses if soil condition did not change and there was no sudden
change in land use and management in the given patch of land.

For the non-vegetated area, the moisture problem has been also
minimized or avoided and reflectance maximized as we took the max-
imal NonVIs (e.g., TCB, LST and NDII). It is known that the higher tem-
perature corresponds to lower moisture in soils (Qiu, 2006), and the
higher soil brightness (TCB) to higher soil albedo or bulk reflectance.
The problematic issues mentioned in Section 1 were thus resolved.
The shortcoming that still remains is that related to the salt-tolerant
crops such as barley, alfalfa and cotton. Halophytes can be easily recog-
nized as they are mostly distributed along the banks of the drainage
channels or near or in the swamps, but barley and cotton are culti-
vated in croplands. As was revealed by the experiments conducted by
Dieleman (1963), barley has a rather strong resistance to salinity, and
can still grow well with good production (1.68–1.84 tons/ha) in the
fields where soil salinity reaches 8–16 dS/m if fertilizer (e.g., nitrogen)
is available. So visually, barley appears as strong greenness in satellite
imagery and this tends to give us a false appearance of very low salinity
in images (e.g., b4 dS/m). Despite the application of the multiyear

image of Fig.�4


Fig. 5. Salinity change trends in Dujaila. Red (positive change) indicates an increase in sa-
linity, and blue (negative change), a decrease in salinity in the observation periods from
1990 to 2000 and from 2000 to 2010.
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maxima-based algorithm, such “false salinity” may not be completely
removed.

One may understand the relevance of VIs and other NonVIs such as
TCB for salinity assessment but have concern about the reasonability
to use LST as one of the salinity indicators in bareland. In fact, it is a com-
mon knowledge that thermal conductivity of materials is temperature
(T) dependent, and the former is associated with electrical conductivity
(EC). This provides a possibility to quantify the salinity by using soil T, in
this case, LST. However, the interrelationship between the thermal and
electrical conductivities is complex andmay change significantly depend-
ing on materials, e.g., soil types. Mougenot et al. (1993), Metternicht and
Zinck (1996), Goossens and van Ranst (1998), and Iqbal (2011) have ex-
plored the possibility to use the thermal band to identify the salt-affected
Table 5
Salinity change trends in the Dujaila site.

Salinity level (dS/m) Area (ha) Change trend

1990 2000 2010 Change from 1990 to 2000 (h

0.0–4.0 (non-saline) 19,394 13,787 17,707 −5607
4.0–8.0 (slightly) 2018 5818 2924 3800
8.0–15.0 (moderately) 1600 4012 2021 2412
15.0–30.0 (strongly) 2084 1568 1303 −516
30.0–60.0 (very strongly) 718 630 1854 −88
N60.0 (extremely) 0 0 3 0
soils or to differentiate saline soil fromgypsiferous soils, but they have not
discussed the mechanism behind. Abu-Hamdeh and Reeder (2000)
ascertained the relationship between thermal conductivity and salinity,
and found that thermal conductivity decreases with the increase in
the amount of added salts at given moisture content. Sepaskhah and
Boersma (1979) found that the apparent thermal conductivity is indepen-
dent of water content at very low water contents. Consequently, in the
driest condition (lowest moisture), thermal conductivity is associated
with the salt amount — salinity. We believe, therefore, that LST-based
models are relevant.

Concern on the applicability of the models may also be addressed.
Since themodels were obtained from a pilot site study, direct extension
without necessary adjustment or adaptation to other dry areas is not
recommended. However, we consider it reasonable to extend our salin-
ity mappingmethodology as the challenges and problematic issues that
are commonly faced in salinity mapping by remote sensing are mini-
mized. In fact, Douaoui et al. (2006), Fernández-Buces et al. (2006),
Brunner et al. (2007) and Eldeiry andGarcia (2010) have conducted dif-
ferent modeling and best band combinations for salinity mapping stud-
ies, but they used single or multiple single images and did not treat
differently the vegetated and non-vegetated areas. Especially, Eldeiry
and Garcia (2010) did not take into account the non-vegetated area.
Their approaches cannot avoid the influences from crop rotation/fallow,
and moisture.

To test the applicability of the methodology, we applied the same
approach and procedure to another pilot site, Musaib, in Mesopotamia
for multitemporal salinity mapping, and the assessment work was suc-
cessfully achieved (Mhaimeed et al., 2013). Therefore, we believe that
the approaches that we proposed in this paper are extendable to other
similar environments for salinity mapping and assessment.

4. Conclusions

This paper demonstrates salinitymapping and change trend analysis
in Dujaila in Central Iraq based on the development of relevant salinity
models and mapping approaches despite the challenges and difficulty.
Although more field data and good quality satellite imagery containing
bothmiddle infrared and thermal bands are needed forwider validation
and improvement of themaps andmodels, themap of the present state
is in good agreementwith the fieldmeasurements. This implies that the
models developed are operational in Dujaila and our methodology, of
evident advantages and its uniqueness from others, is extendable to
other similar dryland environments for salinity assessment.

It is seen that the salinity has experienced significant changes in
Dujaila in the past decades which are closely related to land use and
management (e.g., land abandonment) by farmers that are associated
with both macro- and micro-socioeconomic environments in Iraq
apart from the natural factors such as high salt concentration of ground-
water, and dry climate. For better understanding of the causes of saliniza-
tion, a spatially explicit modeling incorporating natural, socioeconomic,
and climate data to reveal both the spatial and human determinants
and the impacts of climate change on salinization is required in the future.

The real difficulty that we faced was the field sampling and the lack
of good quality satellite images for the recent years. Due to security
a) % of change vs. 1990 Change from 2000 to 2010 (ha) % of change vs. 2000

−28.9 3921 28.4
188.4 −2894 −49.7
150.8 −1991 −49.6
−24.8 −265 −16.9
−12.3 1225 194.6

0 3 0
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reasons, a number of designed sampling plotswere not accessible, espe-
cially in barelands. Instead of random sampling, a stratified sampling is
envisaged when the security situation improves. Additionally, Landsat
ETM+ images were themain source that we could utilize for the recent
period. Due to the SLC-Off problem, these images, especially, the short-
wave infrared and thermal bandswere not ideal thoughwe had applied
the maxima-based algorithm. In future work, we should use Landsat 8
data as they have become available since April 2013.
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